
Part II

Algorithms

62



Chapter 8

Sorting

All the sorting algorithms in this chapter use data structures of a specific type
to demonstrate sorting, e.g. a 32 bit integer is often used as its associated
operations (e.g. <, >, etc) are clear in their behaviour.

The algorithms discussed can easily be translated into generic sorting algo-
rithms within your respective language of choice.

8.1 Bubble Sort

One of the most simple forms of sorting is that of comparing each item with
every other item in some list, however as the description may imply this form
of sorting is not particularly effecient O(n2). In it’s most simple form bubble
sort can be implemented as two loops.

1) algorithm BubbleSort(list)
2) Pre: list 6= ∅
3) Post: list has been sorted into values of ascending order
4) for i ← 0 to list.Count− 1
5) for j ← 0 to list.Count− 1
6) if list[i] < list[j]
7) Swap(list[i], list[j])
8) end if
9) end for
10) end for
11) return list
12) end BubbleSort

8.2 Merge Sort

Merge sort is an algorithm that has a fairly efficient space time complexity -
O(n log n) and is fairly trivial to implement. The algorithm is based on splitting
a list, into two similar sized lists (left, and right) and sorting each list and then
merging the sorted lists back together.

Note: the function MergeOrdered simply takes two ordered lists and makes
them one.

63



CHAPTER 8. SORTING 64

54274754

0 1 2 3 4

54274754

0 1 2 3 4

54275744

0 1 2 3 4

54752744

0 1 2 3 4

75542744

0 1 2 3 4

75542744

0 1 2 3 4

75542744

0 1 2 3 4

75547424

0 1 2 3 4

75745424

0 1 2 3 4

75745424

0 1 2 3 4

75745442

0 1 2 3 4

75745442

0 1 2 3 4

75745442

0 1 2 3 4

75745442

0 1 2 3 4

75745442

0 1 2 3 4

Figure 8.1: Bubble Sort Iterations

1) algorithm Mergesort(list)
2) Pre: list 6= ∅
3) Post: list has been sorted into values of ascending order
4) if list.Count = 1 // already sorted
5) return list
6) end if
7) m ← list.Count / 2
8) left ← list(m)
9) right ← list(list.Count − m)
10) for i ← 0 to left.Count−1
11) left[i] ← list[i]
12) end for
13) for i ← 0 to right.Count−1
14) right[i] ← list[i]
15) end for
16) left ← Mergesort(left)
17) right ← Mergesort(right)
18) return MergeOrdered(left, right)
19) end Mergesort



CHAPTER 8. SORTING 65

54

2

74

75

4

75

4

54

2

74

4

75

74

54

2

2

54
Divide

54

2

75

4

74

54

2
75

74

54

4

2

Impera (Merge)

Figure 8.2: Merge Sort Divide et Impera Approach

8.3 Quick Sort

Quick sort is one of the most popular sorting algorithms based on divide et
impera strategy, resulting in an O(n log n) complexity. The algorithm starts by
picking an item, called pivot, and moving all smaller items before it, while all
greater elements after it. This is the main quick sort operation, called partition,
recursively repeated on lesser and greater sub lists until their size is one or zero
- in which case the list is implicitly sorted.

Choosing an appropriate pivot, as for example the median element is funda-
mental for avoiding the drastically reduced performance of O(n2).



CHAPTER 8. SORTING 66

54274754
Pivot

54274754
Pivot

75274544
Pivot

75547424
Pivot

75745424
Pivot

24
Pivot

42
Pivot

7574
Pivot

7574

75745442

Pivot

Figure 8.3: Quick Sort Example (pivot median strategy)

1) algorithm QuickSort(list)
2) Pre: list 6= ∅
3) Post: list has been sorted into values of ascending order
4) if list.Count = 1 // already sorted
5) return list
6) end if
7) pivot ←MedianValue(list)
8) for i ← 0 to list.Count−1
9) if list[i] = pivot
10) equal.Insert(list[i])
11) end if
12) if list[i] < pivot
13) less.Insert(list[i])
14) end if
15) if list[i] > pivot
16) greater.Insert(list[i])
17) end if
18) end for
19) return Concatenate(QuickSort(less), equal, QuickSort(greater))
20) end Quicksort



CHAPTER 8. SORTING 67

8.4 Insertion Sort

Insertion sort is a somewhat interesting algorithm with an expensive runtime of
O(n2). It can be best thought of as a sorting scheme similar to that of sorting
a hand of playing cards, i.e. you take one card and then look at the rest with
the intent of building up an ordered set of cards in your hand.

54274754 54274754 54274754

74

54275744

2

75

54757442

54

75745442

4

Figure 8.4: Insertion Sort Iterations

1) algorithm Insertionsort(list)
2) Pre: list 6= ∅
3) Post: list has been sorted into values of ascending order
4) unsorted ← 1
5) while unsorted < list.Count
6) hold ← list[unsorted]
7) i ← unsorted− 1
8) while i ≥ 0 and hold < list[i]
9) list[i + 1] ← list[i]
10) i ← i− 1
11) end while
12) list[i + 1] ← hold
13) unsorted ← unsorted + 1
14) end while
15) return list
16) end Insertionsort



CHAPTER 8. SORTING 68

8.5 Shell Sort

Put simply shell sort can be thought of as a more efficient variation of insertion
sort as described in §8.4, it achieves this mainly by comparing items of varying
distances apart resulting in a run time complexity of O(n log2 n).

Shell sort is fairly straight forward but may seem somewhat confusing at
first as it differs from other sorting algorithms in the way it selects items to
compare. Figure 8.5 shows shell sort being ran on an array of integers, the red
coloured square is the current value we are holding.

1) algorithm ShellSort(list)
2) Pre: list 6= ∅
3) Post: list has been sorted into values of ascending order
4) increment ← list.Count / 2
5) while increment 6= 0
6) current ← increment
7) while current < list.Count
8) hold ← list[current]
9) i ← current− increment
10) while i ≥ 0 and hold < list[i]
11) list[i + increment] ← list[i]
12) i− = increment
13) end while
14) list[i + increment] ← hold
15) current ← current + 1
16) end while
17) increment / = 2
18) end while
19) return list
20) end ShellSort

8.6 Radix Sort

Unlike the sorting algorithms described previously radix sort uses buckets to
sort items, each bucket holds items with a particular property called a key.
Normally a bucket is a queue, each time radix sort is performed these buckets
are emptied starting the smallest key bucket to the largest. When looking at
items within a list to sort we do so by isolating a specific key, e.g. in the example
we are about to show we have a maximum of three keys for all items, that is
the highest key we need to look at is hundreds. Because we are dealing with, in
this example base 10 numbers we have at any one point 10 possible key values
0..9 each of which has their own bucket. Before we show you this first simple
version of radix sort let us clarify what we mean by isolating keys. Given the
number 102 if we look at the first key, the ones then we can see we have two of
them, progressing to the next key - tens we can see that the number has zero
of them, finally we can see that the number has a single hundred. The number
used as an example has in total three keys:



CHAPTER 8. SORTING 69

Figure 8.5: Shell sort



CHAPTER 8. SORTING 70

1. Ones

2. Tens

3. Hundreds

For further clarification what if we wanted to determine how many thousands
the number 102 has? Clearly there are none, but often looking at a number as
final like we often do it is not so obvious so when asked the question how many
thousands does 102 have you should simply pad the number with a zero in that
location, e.g. 0102 here it is more obvious that the key value at the thousands
location is zero.

The last thing to identify before we actually show you a simple implemen-
tation of radix sort that works on only positive integers, and requires you to
specify the maximum key size in the list is that we need a way to isolate a
specific key at any one time. The solution is actually very simple, but its not
often you want to isolate a key in a number so we will spell it out clearly
here. A key can be accessed from any integer with the following expression:
key ← (number / keyToAccess) % 10. As a simple example lets say that we
want to access the tens key of the number 1290, the tens column is key 10 and
so after substitution yields key ← (1290 / 10) % 10 = 9. The next key to
look at for a number can be attained by multiplying the last key by ten working
left to right in a sequential manner. The value of key is used in the following
algorithm to work out the index of an array of queues to enqueue the item into.

1) algorithm Radix(list, maxKeySize)
2) Pre: list 6= ∅
3) maxKeySize ≥ 0 and represents the largest key size in the list
4) Post: list has been sorted
5) queues ← Queue[10]
6) indexOfKey ← 1
7) fori ← 0 to maxKeySize− 1
8) foreach item in list
9) queues[GetQueueIndex(item, indexOfKey)].Enqueue(item)
10) end foreach
11) list ← CollapseQueues(queues)
12) ClearQueues(queues)
13) indexOfKey ← indexOfKey ∗ 10
14) end for
15) return list
16) end Radix

Figure 8.6 shows the members of queues from the algorithm described above
operating on the list whose members are 90, 12, 8, 791, 123, and 61, the key we
are interested in for each number is highlighted. Omitted queues in Figure 8.6
mean that they contain no items.

8.7 Summary

Throughout this chapter we have seen many different algorithms for sorting
lists, some are very efficient (e.g. quick sort defined in §8.3), some are not (e.g.



CHAPTER 8. SORTING 71

Figure 8.6: Radix sort base 10 algorithm

bubble sort defined in §8.1).
Selecting the correct sorting algorithm is usually denoted purely by efficiency,

e.g. you would always choose merge sort over shell sort and so on. There are
also other factors to look at though and these are based on the actual imple-
mentation. Some algorithms are very nicely expressed in a recursive fashion,
however these algorithms ought to be pretty efficient, e.g. implementing a linear,
quadratic, or slower algorithm using recursion would be a very bad idea.

If you want to learn more about why you should be very, very careful when
implementing recursive algorithms see Appendix C.


